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Laboratoire de Physique Statistique, École Normale Supérieureb, 24 rue Lhomond, 75231 Paris Cedex 05, France

Received 17 November 2004 / Received in final form 13 January 2005
Published online 20 April 2005 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

Abstract. We explore the nature of the transition to the Fulde-Ferrell-Larkin- Ovchinnikov superfluid
phases in the low temperature range in two dimensions, for the simplest isotropic BCS model. This is done
by applying the Larkin-Ovchinnikov approach to this second order transition. We show that there is a
succession of transitions toward ever more complex order parameters when the temperature goes to zero.
This gives rise to a cascade with, in principle, an infinite number of transitions. Except for one case, the
order parameter at the transition is a real superposition of cosines with equal weights. The directions of
these wavevectors are equally spaced angularly, with a spacing which goes to zero when the temperature
goes to zero. This singular behaviour in this T = 0 limit is deeply linked to the two-dimensional nature of
the problem.

PACS. 74.20.Fg BCS theory and its development – 74.60.Ec Mixed state, critical fields, and surface sheath

1 Introduction

The possible existence of the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) superfluid phases [1,2] has been
pointed out in the early sixties and it has given rise to
much work ever since that time. In addition to their in-
trinsic fundamental interest which extends nowadays to
ultracold Fermi gases (where a two-dimensional situation
is quite achievable experimentally) and neutron stars [3],
these phases are quite relevant experimentally since they
are expected to arise in superconductors with very high
critical fields, which are naturally very actively searched
for. On several occasions these phases have been claimed
to be observed experimentally, but to date these hopes
have not been firmly substantiated. Very recently anoma-
lies in the heavy fermion compound CeCoIn5 have been at-
tributed to FFLO phases [4]. The case of two-dimensional
(2D) systems is of particular interest [5] since they are
experimentally quite relevant. Indeed a major strategy to
observe these transitions is to eliminate orbital currents,
which are responsible for the low critical fields in standard
superconductors. This can be achieved in quasi two- di-
mensional systems, made of widely separated conducting
planes, such as organic compounds or high Tc cuprate su-
perconductors. In this case hopping between planes is very
severely restricted. Hence the orbital currents perpendic-
ular to the planes are very weak when a strong magnetic
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field is applied parallel to the planes, and there is essen-
tially no orbital pair breaking effect which opens the path
to FFLO phases at much higher fields. Indeed experimen-
tal results in organic compounds have been claimed quite
recently [6,7] to be compatible with the existence of FFLO
phases. Naturally when the magnetic field is not exactly
parallel to the planes, one finds in addition vortex-like
structures and the physical situation gets even more com-
plex [8].

The FFLO transition in 2D systems is believed to be
second order and in particular Burkhardt and Rainer [9]
have studied in details the transition to a planar phase,
where the order parameter ∆(r) is a simple cos(q.r) at
the transition. This phase has been found by Larkin and
Ovchinnikov [2] to be the best one in 3D at T = 0 for a
second order phase transition. And in 3D it is also found
to be the preferred one in the vicinity of the tricritical
point and below [10–12], although in this case the transi-
tion turns out to be first order (except at very low tem-
perature). However it is not clear that this is always the
case since, as first explored by Larkin and Ovchinnikov,
this order parameter is in competition with any super-
position of plane waves, provided that their wavevectors
have all the same modulus. Indeed we have shown very
recently [13] that, at low temperature, the transition is
rather a first order one, toward an order parameter with
a more complex structure. For example at T = 0 it is very
near the linear combination of three cosines oscillating in
orthogonal directions.

In this paper we explore the low temperature range
in 2D and show that the second order transition is indeed
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toward rather more complex order parameters. A short re-
port of our results has already been published [14]. A first
step in this direction is found in the recent work of Shima-
hara [15] who found a transition toward a superposition
of three cosines. Here we show that, when the tempera-
ture is lowered toward T = 0, one obtains a cascade of
transitions toward order parameters with an ever increas-
ing number of plane waves. The T = 0 limit is singular
in this respect. This is actually clear from the beginning.
Indeed if one looks at the second order term in the expan-
sion of the free energy in powers of the order parameter,
which gives the location of the FFLO transition, one finds
it to be a singular function of the plane wave wavevector.
This is recalled in the next section. Then we calculate the
fourth order term in the free energy expansion and show
that the phases which are selected by this term display
the cascade of transitions mentioned above.

2 The free energy expansion: second order
term

The general expression for the free energy difference Ω ≡
Ωs − Ωn between the superconducting and the normal
state can be obtained in a number of ways, starting for ex-
ample [9,16,17] from Eilenberger’s expression in terms of
the quasiclassical Green’s function or from the gap equa-
tion [2] and Gorkov’s equations. When the result is ex-
panded up to fourth order term in powers of the Fourier
components ∆q of the order parameter ∆(r):

∆(r) =
∑

qi

∆qi exp(iqi.r) (1)

one obtains:

Ω

N0
=
∑

q

Ω2(q, µ̄, T )|∆q|2

+
1
2

∑

qi

Ω4(q1,q2,q3,q4, µ̄, T )∆q1∆
∗
q2
∆q3∆

∗
q4

(2)

where we have momentum conservation q1 +q3 = q2 +q4

in the fourth order term and N0 is the single spin density
of states at the Fermi surface. The explicit expression of
Ω2(q, µ̄, T ) in terms of the standard BCS interaction V
and of the free fermions propagator is:

N0Ω2(q, µ̄, T ) =
1
V

− T
∑

n,k

Ḡ(k)G(k + q) (3)

where G(k) = (iω̄n − ξk)−1 and Ḡ(k) = (−iω̄n − ξk)−1

and ω̄n ≡ ωn − iµ̄, with µ̄ = (µ↑ − µ↓)/2 being half the
chemical potential difference between the two fermionic
populations forming pairs, ξk the kinetic energy measured
from the Fermi surface for µ̄ = 0 and ωn = πT (2n+1) the
Matsubara frequency. Performing the ξk integration and
the 2D angular average over k̂ gives:

Ω2(q, µ̄, T ) =
1

N0V
+ 2πT Im

ωc∑

n=0

1√
(iω̄n)2 − µ̄2q̄2

(4)

where we have introduced the dimensionless wavevector
q̄ = qvF /2µ̄. In equation (4) the summation has to be
cut-off at a frequency ωc in the standard BCS way. It is
more convenient to rewrite Ω2, by introducing physical
quantities related to the q̄ = 0 case, as:

Ω2(q, µ̄, T ) = a0(µ̄, T ) + I(q, µ̄, T ) (5)

with:

I(q, µ̄, T ) = 2πT Im
∞∑

n=0

1√
(iω̄n)2 − µ̄2q̄2

− 1
iω̄n

. (6)

We have introduced:

a0(µ̄, T ) =
1

N0V
− 2πT Re

ωc∑

n=0

1
ω̄n

(7)

which is zero on the spinodal transition line (the line in
the µ̄, T plane where the normal state becomes absolutely
unstable against a transition toward a space independent
order parameter) and is positive above it. At the FFLO
transition we are looking at, we have Ω2(q, µ̄, T ) = 0. The
actual transition corresponds to the largest possible µ̄ at
fixed T . From equation (7) this corresponds to have the
largest a0(µ̄, T ). Hence from equation (5) we want to min-
imize I(q, µ̄, T ) with respect to q. At low temperature it
is more convenient to express I as:

I (q, µ̄, T ) =

− 1
2

Re
∫ ∞

−∞
dω tanh

( ω
2T

)


 1√
(ω + µ̄)2 − µ̄2q̄2

− 1
ω + µ̄





(8)

where the integration contour runs actually infinitesimally
above the real ω axis.

At T = 0 the integration is easily performed to give:

I (q, µ̄, T ) = Re ln
(
1 +

√
1 − q̄2

)
− ln 2. (9)

The minimum is reached for q̄ = 1 , in agreement with
Shimahara [5] and Burkhardt and Rainer [9], and I =
− ln 2 at this minimum. In this case, from equation (7),
a0(µ̄, 0) = ln(2µ̄/∆0) where∆0 = 2ωc exp(−1/N0V ) is the
zero temperature BCS phase gap (this corresponds to the
value µ̄ = ∆0/2 for the spinodal transition). This leads to
µ̄ = ∆0 for the location of the FFLO transition, again in
agreement with previous work. It is worth to note that, as
already mentioned in the introduction, the location q̄ = 1
of the minimum corresponds to a singular point for I since
we have explicitly I = ln(q̄/2) for q̄ > 1. While I itself is
continuous, its derivative is discontinuous for q̄ = 1.

For T �= 0 there is no singular behaviour and we find
the value of q̄ giving the minimum I by writing that its
derivative with respect to q̄ is zero. Integrating the result
by parts leads to the condition:

Re
∫ ∞

−∞
dy

1
cosh2 y

1 + 2ty√
(1 + 2ty)2 − q̄2

= 2 (10)
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where we have taken the new variable y = ω/2T and de-
fined the reduced temperature t = T/µ̄. Only the ranges
y > (q̄ − 1)/2t ≡ a and y < −(q̄ + 1)/2t contribute to the
real part of the integral. Since at low T we have q̄ ≈ 1, this
last range will only give an exponentially small contribu-
tion because of the factor cosh−2 y. Since this same factor
makes |y| to be at most of order 3 , we can make at low T to
leading order 1+2ty ≈ 1 and (1+2ty)2−q̄2 ≈ 2(1−q̄+2ty).
It is then seen that we must have (q̄− 1)/2t� 1, because
(q̄ − 1)/2t ≈ 1 makes the left hand side of equation (10)
much larger than unity at low T . This implies y � 1 and
2 coshy ≈ exp y. The integral is then easily evaluated and
equation (10) gives finally to leading order:

q̄ − 1 =
t

2
ln
π

2t
. (11)

Note that this result is in disagreement with the analysis
given [18] by Bulaevskii. The reason for this discrepancy is
discussed in details in Appendix A. In particular we red-
erive in this appendix our equation (10) from the starting
equation of reference [18].

A more complete low temperature expansion can be
fairly easily extracted from equation (10). As previously
seen, the range y > a in the integration is sufficient since
the other integration range gives an exponentially small
term. With the change of variable y = u2+a, equation (10)
leads to:

∫ +∞

0

du
1 + 2t̄u2

cosh2(u2 + a)
√

1 + t̄u2
= 2

√
t̄ (12)

where we have defined t̄ = t/q̄. Neglecting terms of order t̄2
equation (12) can be written as:
∫ +∞

0

du

cosh2(u2 + a)
+

3
2
t̄

∫ +∞

0

u2du

cosh2(u2 + a)
= 2

√
t̄.

(13)
From equation (11) the leading order for a is a0 =
(1/4) ln(π/2t̄) � 1. In the second integral in equation (13)
we can replace a by a0 since exp(−2a0) =

√
2t̄/π � 1.

Setting a = a0 + δa, we obtain an expansion of δa in pow-
ers of t̄1/2 by expanding the first integral up to second
order in powers of δa:

− 4√
π
t̄+

4
√

3
π

t̄3/2 + δa

(
−4t̄1/2 +

16√
π
t̄

)

+ 4(δa)2 t̄1/2 +
3
4
t̄3/2 = 0 (14)

valid up to the order t̄3/2. Solving this equation order by
order, we find the following expansion for a:

a =
1
4

ln
( π

2t̄

)
−
√
t̄

π
+t̄

(
3
16

+
√

3
π

− 3
π

)
+O(t̄3/2). (15)

This expression leads to a marked improvement when it
is compared to the straight numerical evaluation of the
Matsubara sums in equation (6). This is seen in Fig-
ure 1 where we have plotted the optimal a = (q̄ − 1)/2t
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Fig. 1. a = (q̄ − 1)/2t from the leading low temperature ap-
proximation equation (11) (dashed-dotted line), the low tem-
perature expansion equation (15) (dotted line) and the full
numerical calculation (full line), as a function of t̄ = t/q̄.
The lower panel gives the relation between t̄ and T/Tc0 (full
line), the dotted line is the low temperature limiting behaviour
T/Tc0 = t̄∆0/Tc0 = 1.76t̄.

from straight numerical calculation, as well as its lead-
ing low temperature approximation and the one result-
ing from the expansion equation (15). We give also for
convenience, in the lower panel, the dependence of our
reduced temperature t̄ as a function of the ratio T/Tc0,
where Tc0 is the standard BCS critical temperature, found
for µ̄ = 0. In the low temperature limit T → 0, we have
merely q̄ = 1 and µ̄ = ∆0, hence t̄ = T/∆0 and the
dotted straight line in the lower panel gives this limiting
behaviour T/Tc0 = t̄∆0/Tc0.

3 Fourth order term

3.1 Leading behaviour

The second order term in the free energy gives the same
transition line for all the combinations of plane waves.
The selection among the various possible order parameters
will be made by the fourth order term in the free energy
expansion, as pointed out by Larkin and Ovchinnikov. The
selected state will correspond to the lowest fourth order
term. So we turn now to this fourth order term. Its general
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expression is given by equation (2) with [2]:

N0Ω4 (q1,q2,q3,q4, µ̄, T ) =

T
∑

n,k

Ḡ (k)G (k + q1) Ḡ (k + q1 − q4)G (k + q2) (16)

where we have used already momentum conservation
q1 + q3 = q2 + q4. Since all the wavevectors qi have
the same modulus given by equation (11), this momen-
tum conservation implies in our 2D situation either [2]
q1 = q2 together with q3 = q4, or equivalently q1 = q4

together with q3 = q2. Moreover one has the additional
possibility q1 = −q3 together with q2 = −q4. The two
first possibilities lead to a same coefficient called J(αq1,q3)
by LO where αq1,q3 is the angle between q1 and q3. Sim-
ilarly the last possibility leads to a coefficient J̃(αq1,q2).
Explicitly the fourth order term in the free energy (last
term of the r.h.s. of Eq. (2)) becomes [2]:

1
2

∑

i,j

(
2 − δqi,qj

) |∆qi |2|∆qj |2J
(
αqi,qj

)

+
(
1 − δqi,qj − δqi,−qj

)
∆qi∆−qi∆

∗
qj
∆∗

−qj
J̃
(
αqi,qj

)

(17)

with, after a change of variable in the summation:

N0J(αq1,q2) = T
∑

n,k

Ḡ(k + q1)Ḡ(k + q2)G2(k) (18)

and

N0J̃ (αq1,q2) =

T
∑

n,k

Ḡ (k) Ḡ (k + q1 + q2)G (k + q1)G (k + q2) . (19)

When the ξk integration is performed, taking into account
ξk+q ≈ ξk + k.q/m since q � kF , one finds:

J(αq1,q2) = 4πT Im
∞∑

n=0

×
〈

1
(2iω̄n + k.q1/m)2(2iω̄n + k.q2/m)

+ 1 ↔ 2
〉

(20)

where the bracket means the angular average, and
similarly:

J̃(αq1,q2) = −16πT Im
∞∑

n=0

×
〈

iω̄n

[(2iω̄n)2 − (k.q1/m)2].[(2iω̄n)2 − (k.q2/m)2]

〉

(21)

on which it is clear that J̃(π − α) = J̃(α).
Let us first consider J(α). As in the preceding section

when going from equation (6) to equation (8), it is more

convenient to transform the sum over Matsubara frequen-
cies into an integral on the real frequency axis. When one
furthermore performs a by parts integration over the fre-
quency ω, one gets from equation (20):

4µ̄2J (α) = −Re
∫ ∞

−∞
dω

1
cosh2 (ω/2T )

∫ 2π

0

dθ

2π

× 1
[q̄ cos (θ−α/2)−(1+ω/µ̄)] . [q̄ cos (θ+α/2)−(1+ω/µ̄)]

(22)

where as above q̄ = qkF /2mµ̄ and the integration contour
runs again infinitesimally above the real ω axis. Here in
the angular integration we have taken the reference axis
bisecting the angle between q1 and q2. This angular in-
tegration is performed by residues, taking exp(iθ) as a
variable. For Y = (1 + ω/µ̄)/q̄ this leads to:

∫ 2π

0

dθ

2π
1

[cos (θ − α/2) − Y ] . [cos (θ + α/2) − Y ]
=

Y

(Y 2 − cos2 (α/2))
√
Y 2 − 1

(23)

where the cut in the determination of the square root has
to be taken on the positive real axis, as it is clear when
one considers the case of very large |Y |. When this result
is inserted in equation (22) and Y is taken as new variable,
one finds, introducing again the reduced temperature t =
T/µ̄:

16tµ̄2q̄J(α) = −Re
∫ ∞

−∞
dY

× 1
cosh2((q̄Y − 1)/2t)

Y

(Y 2 − Y 2
1 )

√
Y 2 − 1

(24)

with Y1 = cos(α/2).
Up to now we have made no approximation in our cal-

culation and the result is valid at any temperature. Let
us now focus on the low temperature regime t � 1. Be-
cause of the factor cosh−2((q̄Y − 1)/2t), only the vicinity
of Y = 1 will contribute. Moreover only the half circle
contour around the pole Y = Y1 and the range Y > 1
contribute to the real part. In this last domain we have
(q̄Y − 1)/2t > (q̄ − 1)/2t � 1 from our result for q̄ equa-
tion (11), so we can again simplify the hyperbolic cosine
into an exponential (although this is not in practice a good
approximation numerically). With the further change of
variable Y = 1 + tv2/q̄ in the resulting integral, we find
to leading order:

16tµ̄2J (α) =
π

α

1
cosh2

[
(1/4) ln π

2t − β2/2
]

− 8√
π (1 + cos (α/2))

∫ ∞

0

dv
exp

(−v2
)

v2 + β2
(25)

where we have substituted explicitly the result equa-
tion (11) for q̄ and have set β2 = (1 − cos(α/2))/t. The
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integral in this result can not be further simplified in gen-
eral and is related to parabolic cylinder functions. Let us
consider now some important limiting cases for this result.
First we take at fixed α the limit T → 0. This implies
β2 → ∞, the first term goes to zero and the integral is
easily calculated in this limit, leading to:

J(α) = − 1
4µ2

1
sin2(α/2)

. (26)

On the other hand if at fixed T we take the limit α → 0,
we have β2 → 0. The limiting behaviour of the integral
is π/(2β) − π1/2 as can be obtained through a by parts
integration, the dominant divergent contribution from the
two terms cancels out and we are left with [19]:

J(α) =
1

4µ2

1
t

(27)

which goes naturally to infinity for T → 0. These two lim-
its can be obtained more rapidly by making the proper
simplifications from the start of the calculation equa-
tion (22).

The two limiting cases which we have just considered
show that, at low temperature, J(α) has a quite remark-
able behaviour. For most of the range it is negative as it
can be seen from equation (26) and it even goes to large
negative values when α gets very small. This tends to favor
states with small angle between wavevectors, as we will see
below. On the other hand for α = 0 or very small J(α) is
positive and very large, as it results from equation (27).
Clearly at low T the interesting range is the small α do-
main where we can write β = α/(8t)1/2. Surprisingly J(α)
first starts to increase strongly from its α = 0 value before
going down to very negative values. This can be seen sim-
ply by looking at the specific point β2 = (1/2) ln(π/2t)
for which the second term is negligible and which gives
to dominant order J(α) = π/(32µ2)t−3/2(ln(π/2t))−1/2,
even more diverging for T → 0 than the T = 0 value. The
integral of J(α) over α can also be analytically evaluated,
and it shows that the strong positive peak at small α dom-
inates over the negative contribution from the rest of the
range. This quasi-singular behaviour of J(α) is summa-
rized in Figure 2 where we have plotted J(α) for various
temperatures.

We perform now the same kind of treatment for J̃(α).
One goes again from equation (21) to an integration on
the real frequency axis. However there is no integration by
parts, and the angular average to be calculated is some-
what more complicated. It can nevertheless be performed
by the same method and gives explicitly, with the same
variable Y = (1 + ω/µ̄)/q̄ as above:

∫ 2π

0

dθ

2π
1

[cos2 (θ − α/2) − Y 2] .
[
cos (θ + α/2)2 − Y 2

] =

1
2Y

√
Y 2 − 1

(
1

Y 2 − cos2 (α/2)
+

1
Y 2 − sin2 (α/2)

)
.

(28)
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Fig. 2. J(α) for various values of the reduced temperature
t̄ = T/(q̄µ̄) = 0.01, 0.05 and 0.1. The lines are calculated using
our low temperature expressions for J(α) and a, equations (36)
and (15), while the points correspond to the exact result nu-
merical summation over Matsubara frequencies. The dashed
line is the asymptotic behaviour for J(α) in the T → 0 limit
equation (26). The dashed-dotted lines are the leading order
low temperature result equation (25).

The second term is obtained from the first one by the
change α→ π−α. This leads to J̃(α) = J̃o(α)+ J̃o(π−α)
with:

8µ̄2q̄2J̃o(α) =

−Re
∫ ∞

−∞
dY tanh((q̄Y −1)/2t)

1√
Y 2 − 1

1
Y 2 − cos2(α/2)

.

(29)

Here we have contributions coming from half circles
around the poles at Y = ± cos(α/2) = ±Y1 and con-
tributions from the two domains Y > 1 and Y < −1.
Neglecting terms which are exponentially small in the low
temperature limit, we can replace the hyperbolic tangent
by −1 in the Y < −1 domain and for the Y = −Y1 pole.
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Gathering similar contributions this gives:

8µ̄2q̄2J̃o (α) =
π

sinα
tanh ((q̄Y1 − 1) /2t)

+
∫ ∞

1

dY
1 − tanh ((q̄Y − 1) /2t)

(Y 2 − cos2 (α/2))
√
Y 2 − 1

+
2α− π

sinα
(30)

where we have used the fact that, without the tanh((q̄Y −
1)/2t) term, the integral can be performed exactly to give
(π−α)/ sinα. We have taken advantage of this to have the
factor 1− tanh((q̄Y −1)/2t) which is going rapidly to zero
for large Y . This will be of use when we consider below
temperature corrections. The last term in equation (30)
disappears in the combination J̃o(α) + J̃o(π − α), so we
omit it from now on.

Looking now for the dominant contribution at low tem-
perature, we simplify the hyperbolic tangent in the range
Y > 1 since its argument (q̄Y − 1)/2t is large and posi-
tive. So one finds expressions which are similar to the one
encountered in the calculation of J(α). Moreover, because
of the relation J̃(π − α) = J̃(α), we can restrict ourselves
to the case α ≤ π/2. In this case the expression obtained
by the replacement α → π − α is very simple since the
corresponding value of β2 = (1 − cos(α/2))/t is always
very large at low T . This leads finally to:

8µ̄2J̃ (α) = − 2π
sinα

(
1 − 1

1 + (2t/π)1/2 exp (β2)

)

+
2√
π

∫ ∞

0

dv
exp

(−v2
)

v2 + β2
(31)

where we have taken into account that the second term is
only significant when α is small, so we have made α = 0
in its prefactor.

In the limit T → 0 with fixed α, we have β2 → ∞ and
one gets merely:

J̃(α) = − π

4µ2

1
sinα

. (32)

Again if we take α→ 0 at fixed T , β2 → 0, the dominant
divergent contribution cancels and we find:

J̃(α) = − 1
4µ2

. (33)

These two limits can be obtained again more directly.
From these cases we can guess that J̃(α) is always nega-
tive. This is seen in Figure 3 where J̃(α) has been plotted.
However, in the same way as J(α), it has also a singular
behaviour at small α. While for β ≈ α/(8t)1/2 � 1 it di-
verges as −π/(4µ2α), it goes to the finite value −1/(4µ2)
for α = 0. We note that the divergent behaviour in α−1

is weaker than the one in α−2 found for J(α). Similarly
J(0) � |J̃(0)| at low T . So J(α) will play the dominant
role and J̃(α) will only give a subdominant contribution.
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Fig. 3. J̃(α) plotted for various values of the reduced temper-
ature t̄ = T/(q̄µ̄) = 0.01, 0.05 and 0.1. The lines correspond to
the low temperature expressions for J̃(α) and a, equations (38)
and (15) while the dots show the exact results from numerical
summation over Matsubara frequencies. The dashed line is the
asymptotic behaviour equation (32).

3.2 Temperature corrections

The expressions equation (24) and equation (31) found
above respectively for J(α) and J̃(α) are the leading terms
at low temperature. While containing the dominant phys-
ical behaviour, we do not expect them to be so good quan-
titatively at intermediate temperature. It is actually pos-
sible to improve these analytical results markedly in this
respect at the price of a slight complication by includ-
ing the first two terms in an expansion in powers of t̄1/2.
This is the similar to what we have done at the end of
Section 2 for the second order term, and we follow here
the same procedure, together with the steps we have just
taken above for the calculation of J(α) and J̃(α).

We consider first J(α) and start from the exact equa-
tion (24). Since the contribution from the domain Y <
−1 is again exponentially small in the low temperature
regime, we keep only the half circle contour around Y1

and the Y > 1 domain. The integral appearing in equa-
tion (24) can be split in two terms by:

Y

Y 2 − Y 2
1

=
1
2

(
1

Y − Y1
+

1
Y + Y1

)
. (34)

Therefore J(α) can be written as J(α) = Jo(α)+Jo(2π−
α) and we concentrate on the calculation of Jo. With the
same notations a = (q̄ − 1)/2t, t̄ = t/q̄ and the change of
variable (q̄Y − 1)/2t = a+ u2, equation (24) leads to:

32t̄µ̄2q̄2Jo(α) =

− t̄−1/2

∫ ∞

0

du

cosh2(u2 + a)
1

(u2 + β̄2/2)
√

1 + t̄u2

+
π

sin(α/2) cosh2(a− β̄2/2)
(35)

where we have set β̄2 = (1 − cos(α/2))/t̄. The first term
in the r.h.s. of equation (35) is expanded for low t by



R. Combescot and C. Mora: Transitions to the Fulde-Ferrell-Larkin-Ovchinnikov phases... 195

(1 + t̄u2)−1/2 � 1 − t̄u2/2 and the resulting temperature
correction is calculated to lowest order, replacing a by
a0 = ln(π/2t̄)/4. This gives our following final expression,
which has to be used together with equation (16) for a
and q̄:

32t̄µ̄2q̄2Jo(α) = −t̄−1/2

∫ ∞

0

du

cosh2(u2 + a)
1

u2 + β̄2/2

+
π

sin(α/2) cosh2(a− β̄2/2)
+

2t̄√
π

∫ ∞

0

dv
v2 exp(−v2)
v2 + β̄2

.

(36)

The second term in the r.h.s of this equation is only
relevant for angles that are close to zero. Otherwise, it
gives an exponentially small contribution in the low tem-
perature limit. In the expression obtained by the change
α → 2π − α, this term is exponentially small in any case
and can be forgotten. The first and the third term can
be calculated more explicitly for angles α which are not
close to zero (this is in particular the case for Jo(2π−α)),
which implies β̄ → +∞. For the first term in particular
we can make use of our results in Section 2 for the tem-
perature expansion where similar terms were found. This
leads finally in this regime to:

16µ̄2q̄2Jo(α) = − 2
1 − cos(α/2)

+ t̄
2 − cosα/2

(1 − cos(α/2))2
. (37)

For various temperatures, we compare in Figure 2 these
low temperature expressions with the exact calculation
of J(α), from the direct numerical summation in equa-
tion (20) over Matsubara frequencies (with q̄ obtained by
the numerical minimisation of I(q, µ̄, T ) given by Eq. (6)).
We see that, at this level of accuracy, they agree remark-
ably well up to rather high temperatures.

We turn now to a similar calculation for J̃(α) and take
up from equation (30). We have already pointed out that,
since we can restrict ourselves to 0 < α < π/2, the replace-
ment α → π − α gives a value of β̄2 = (1 − cos(α/2))/t̄
which is always large at low temperature. Therefore, in
this replacement, the integral in equation (30) can be cal-
culated to lowest order in t̄ and gives 2t̄/ cos2(α/2). In the
same way in the first term the hyperbolic tangent can be
replaced by −1 in this substitution. With the same change
of variable as for J(α), we have finally:

8µ̄2q̄2J̃o(α) = − π

sinα
(
1 − tanh

(
a− β̄2/2

))
+

2t̄
cos2(α/2)

+ t̄−1/2

∫ ∞

0

du
1 − tanh(u2 + a)

(1+cos(α/2)+2t̄u2)(u2+β̄2/2)
√

1 + t̄u2
.

(38)

As for the calculation of J(α), we can have a more ex-
plicit result by expanding the denominator in the integral
to first order in powers of t̄ and computing the result-
ing temperature correction to lowest order by replacing
a by a0. But we will not write the cumbersome resulting
formula.

Nevertheless, as done previously for J(α), we compare
in Figure 3 our low temperature expressions with the exact
calculation of J̃(α), q̄ and µ̄. The discrepancy appears only
above t̄ � 0.05 in the vinicity of α = π/2 and is mainly
due to the fact that it becomes inaccurate to consider that
β2 is large in calculating J̃o(π − α), as we have done (see
above Eq. (31)). However our low temperature expressions
are already sufficient to describe the cascade.

4 Cascade of order parameter structures

4.1 Ingredients responsible for the cascade

The second order term in the expansion of the free en-
ergy Ω gives the location of the transition µ̄(T ) and the
optimum wavevectors modulus q̄ entering the order pa-
rameter ∆(r) but it can not distinguish between differ-
ent order parameter structures, because from equation (2)
the Fourier components ∆q of the order parameter ∆(r)
are decoupled in the second order term. The resulting
degeneracy is lifted by the fourth order term when one
goes slightly into the superfluid phase. This is the ba-
sis of the analysis of Larkin and Ovchinnikov [2] and of
Shimahara [15]. So to speak, the wavevectors directions
are independent at the level of the second order term
while the fourth order one provides an effective interac-
tion between these directions. Since the expression equa-
tion (17) for the fourth order term depends only on the
angle αn,m between the wavevectors qn and qm through
J(αn,m) and J̃(αn,m), the wavevector interaction appears
therefore simply as pair interactions depending only on
the relative positions of the 2D wavevectors on the circle.
We note however that J̃(αn,m) corresponds to an inter-
action between two pairs of opposite wavevectors (q,−q)
whereas J(αn,m) gives an interaction between two single
wavevectors.

We consider now the ingredients which lead to the pre-
diction of a cascade of transitions between order parame-
ters with increasing number of wavevectors when the tem-
perature goes to zero. First, since J(α) takes very large
positive values for α smaller than a critical angle α0, we
can consider that the angle domain 0 < α < α0 is for-
bidden in order to avoid a dramatic increase of the free
energy Ω. To be quite specific we define α0 by J(α0) = 0.
However we could as well take the critical angle as αc

which gives the minimum of J(α), since α0 and αc are
anyway very close as it can be seen in Figure 2 (we will
indeed consider also αc in the following). On the other
hand it is favorable to take α slightly above α0 since it is
the region where J(α) takes its most negative values. We
note that the behavior of J̃(α) is not as strong compared
to J(α), so we neglect J̃(α) in a first approximation. Next
we see that J(0) diverges as 1/T at low temperature and
it is necessarily present in the free energy equation (17)
from the terms with qn = qm. However their unfavorable
effect on Ω is lowered in relative value if one increases
the number N of wavevectors, since we have N terms in
equation (17) containing J(0) compared to a total num-
ber of N2 terms. Since we want to minimize Ω, this leads
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us to increase N and hence to decrease the angle between
wavevectors as much as possible. Since the angle between
wavevectors is bounded from below by α0, we expect for
symmetry reasons that the optimum structure to have reg-
ularly spaced wavevectors with an interval angle slightly
above α0. The last ingredient to predict the cascade is
the fact that α0 decreases with temperature. As a result,
the number N of plane waves in the optimum structure
increases when the temperature goes to zero. This leads
to a cascade of states where the T = 0 limit is singular.
In the next sections, we present our arguments in more
details.

4.2 Study of the cascade

We begin by considering only the contribution Ωa to the
free energy Ω from the J(α) terms. Even so the full prob-
lem of finding the order parameter structure minimizing
the fourth order term is not a simple one. However it is
natural to assume that the wavevectors of the N plane
waves have a regular angular separation with an angle
2π/N between neighbouring wavevectors, so that their
angular position is given on the circle by αn = 2nπ/N .
Otherwise we would have a minimum corresponding to a
disordered situation for the angles, which sounds quite un-
likely (note that we can not collapse an angle to zero since
we work at fixed N ; we will later on minimize with respect
toN). Then it is easy to show that the weight wn = |∆qn |2
of the various wavevectors are all equal. Indeed the fourth
order term equation (17) is just a quadratic form in wn

and minimizing it is formally identical, for example, to
find the lowest energy for a single particle in a tight bind-
ing Hamiltonian on a ring, with hopping matrix element
J(αn,m) between site n and site m (except for the on-site
term which is J(0)/2). The eigenvectors are plane waves
and the eigenvalues are J(0)/2 +

∑N−1
n=1 J(αn) cos(nφk)

with φk = 2kπ/N and k = 0, 1, .., N − 1. Since J(αn) < 0
for n �= 0, the lowest eigenvalue corresponds to k = 0
which means that the weight wn are all equal.

Conversely if we assume from the start that the all
weights wn are equal, our problem of finding the best αn’s
is the same as the one of finding the equilibrium position of
atoms on a ring with repulsive short range interaction (be-
cause J(α) is large and positive for small α) and attractive
long range interaction (because J(α) is negative for larger
α). We expect the equilibrium to correspond to a crys-
talline structure with regularly spaced atoms. This takes
into account that J(α) is a long range potential (clearly
this regular spacing would not be the equilibrium if we
had a strongly short range potential enforcing a specific
distance between our atoms). Naturally in this argument
we take N large enough to fill up the ring with atoms.
So we come to the conclusion that the minimum energy
corresponds to equally spaced wavevectors.

Finally when we minimize the total free energy equa-
tion (2) with respect to the weight wn we find the general
result:

Ω

N0
= −Ω2(q, µ̄, T )2

G2(N)
(39)

where we have, in the case Ω = Ωa:

NG2(N) = 2J(0) + 4
N−1∑

n=1

J(αn). (40)

We note that we still have a degeneracy of the lowest en-
ergy configuration with respect to the choice of the plane
waves phases.

We now take also into account in the free energy
the terms containing J̃(αn,m). These terms appear when
there are pairs of opposite wavevectors (q,−q). With our
assumption of regularly spaced wavevectors, this corre-
sponds to even N – in which case we have N/2 pairs –
whereas for odd N , there are no J̃(αn,m) terms in the free
energy. Note that J̃(α) is negative for any angle α so that
it is favorable to take pairs of opposite wavevectors. This
seems to be in favor of taking N even and we will indeed
see that as a result states with even N will be selected.

For even N , the total free energy is:

Ω

N0
=
Ωa

N0

+ 2
N/2−1∑

n=0

N/2−1∑

m=0

(1 − δn,m)∆n∆−n∆
∗
m∆

∗
−mJ̃(αn−m)

(41)

where we have used J̃(π − α) = J̃(α) and αn,m =
2(n − m)π/N = αn−m; ∆n is a shorthand for ∆qn and
so on. The fact that J̃(α) is always negative has a direct
consequence on the phases of the plane waves. In order to
minimize the free energy they have to be chosen so that
∆n∆−n∆

∗
m∆

∗
−m is always real. Writing ∆n = |∆n|eiφn ,

this implies that φn + φ−n = Φ0 for any n, where Φ0 is
a constant phase which can be chosen to be zero, since
this merely corresponds to a global phase change for the
order parameter. This link between phases for opposite
wavevectors removes only a part of the degeneracy, since
the phase φn = −φ−n can be still arbitrarily chosen. Now
we see that the contribution of the J̃(αn,m) terms to the
free energy is a quadratic form in w′

n = ∆n∆−n with
negative coefficients, and no on-site contribution. This is
quite similar to what we have found for the J(α) terms in
the preceding subsection. So the equal weight distribution,
which minimizes the J(α) terms, gives also independently
the minimum of the contribution of the J̃(α) terms. This
means that the inclusion of these last terms in the free en-
ergy does not change the optimum structure apart from
the phase link between opposite wavevectors. Finally the
total minimum free energy is still given by equation (39),
where equation (40) is valid for odd N , but has to be
replaced for even N by:

NG2(N) = 2J(0) + 4
N−1∑

n=1

J(αn) + 4
N/2−1∑

n=1

J̃(αn). (42)

In this last case the corresponding equilibrium order pa-
rameter is real, being a sum of cosines of the form ∆(r) =
|∆1|

∑
i cos(qi.r + Φi). We turn now to the minimization

of the free energy with respect to N .
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4.3 Minimization with respect to N

We consider now the numerical calculation of G2(N) for
different order parameter structures, i.e., for various val-
ues of the number of plane waves N . From equation (39)
the equilibrium order parameter corresponds to the maxi-
mum [G2(N)]−1. In Figure 4 we show for [G2(N)]−1 both
our low temperature expansion and the exact evaluation
of the Matsubara sum in equations (20) and (21), as a
function of the reduced temperature t̄. We see that be-
low t̄ � 0.05, the low temperature analytical expressions,
equations (15), (36) and (38), agree remarkably well with
the exact result. They are therefore completely sufficient
quantitatively to study the cascade.

Figure 5 displays the same quantity for lower tempera-
tures, exhibiting the cascade of transitions. An interesting
feature of this cascade is that an order parameter with an
odd number of plane waves is never the lowest energy so-
lution, except from the N = 3 case, already found by
Shimahara [15]. This order parameter is rather peculiar
since, by contrast with all the other ones, it is not invari-
ant under r → −r. However we have no systematic reason
to reject it. The reasons which favor an even number of
plane waves will appear clearly in the next section, where
we will study analytically the asymptotic regime of low
temperatures.

5 Low temperature asymptotic behaviour

5.1 Minimum angle

In the low temperature limit t � 1, we can derive an ex-
plicit expansion for the value of the zero α0 of J(α), as well
as the location αc of its minimum. These critical angles
are crucial to study the cascade since they give essentially
the minimum angle between two wavevectors. In this low
temperature range we have q̄ � 1, so that t̄ � t. As can
be seen in Figure 2, J(α) has two extrema: a maximum
for α around a � β2/2, as it is clear from the cosh−2

term in equation (25), and, for a slightly larger value of
α, a minimum at αc. The zero α0 is naturally in between.
The condition β2/2 � a � a0 = (1/4) ln(π/2t) implies
α � 2

√
t ln(π/2t). Therefore at low t, both α0 and αc are

in a domain where α→ 0 and x = β2/2 = α2/16t→ +∞.
In this regime the two terms in equation (25) for J(α)
simplify to give:

µ̄2J(α) � π

16tα cosh2X
− 1
α2

(43)

where X = x − a0. The second term in this expression
simply comes from −1/4 sin2(α/2) which is the asymptotic
limit equation (26) for µ̄2J(α).

Let us first consider the calculation of αc. The first
term is responsible for the strong upturn near the min-
imum. From the derivative of equation (43) J(α) is ex-
tremal for:

cosh2X =
π

2
x3/2

t1/2

(
tanhX +

4
x

)
. (44)
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alytical low temperature expressions from equations (15), (36)
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Fig. 5. G2 plotted for temperatures lower and values of N
higher than in Figure 4, using equations (15), (36) and (38).
For clarity we do not represent solutions of N larger than 14
but they can be easily numerically evaluated.

The minimum we are looking for is in the domain X > 0
and from the above equation it is found for a large value
of X . This allows to simplify this equation into:

ex = kx3/4 (45)

with k = (2π3/t2)1/4. Writing this equation x = ln k +
(3/4) lnx one can generate a solution by the recurrence
relation xn+1 = ln k + (3/4) lnxn which converges very
rapidly. For example the second iteration gives:

x = ln k + (3/4) ln[ln k + (3/4) ln(ln k)]. (46)

The corresponding result for αc is to leading order in the
low temperature limit:

αc =
(

8t ln
(2π3)1/2

t

) 1
2

(47)

but numerically this is not such a good result at low tem-
perature and one has rather to perform a few iterations
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to get the correct answer. For example in equation (45),
the exact result is x = 5.94 for k = 100, while ln k = 4.60,
but the second iteration equation (46) gives x = 5.92.

Then in order to find the optimum number of plane
waves we notice that J(α) rises very rapidly below αc, so
we can not have basically the angular separation 2π/N
between two plane waves less than αc. Since on the other
hand it is energetically favorable to takeN as large as pos-
sible, as long as J(α) is negative, we can find an asymp-
totic estimate of the optimum value No of N by taking
the integer value of 2π/αc, that is:

No = E

[
2π
αc

]
. (48)

Following the same procedure, we can also derive an
explicit expression for the angle α0 corresponding to the
zero of J(α). From equation (43), we find:

cosh2X =
πα

16t
. (49)

Naturally α0 is close to αc since J(α) is rapidly increas-
ing below αc. We are still in the X > 0 domain and the
solution corresponds to X large. This simplifies the above
equation into:

ex =
k√
2
x1/4 (50)

where k has been defined previously. The corresponding
recurrence relation which generates the exact solution is
xn+1 = ln(k/

√
2)+ (1/4) lnxn. The second iteration gives

here:

x = ln
k√
2

+
1
4

ln
[
ln

k√
2

+
1
4

ln
(

ln
k√
2

)]
(51)

and α0 is simply given by α0 =
√

16tx. We can then make
the same argument as above for αc, and write the following
asymptotic estimate of the optimum value No:

No = E

[
2π
α0

]
(52)

which will naturally be found to be quite near the above
one equation (48), since α0 and αc are quite close.

Naturally we can calculate numerically exactly the op-
timal value N0 of N as a function of the temperature,
from our above results. In the same process we find also
the critical temperatures where the N0 changes. They are
given by the crossings of the G2(N) curves for different
values of N , as it is seen in Figures 4 and 5. In Figure 6
these exact critical temperatures are compared with the
exact calculations of 2π/αc and 2π/α0, as well as their
asymptotic values. As it is seen on this figure, it happens
that the optimal values of N falls essentially just between
2π/αc and 2π/α0 in the low temperature domain.

5.2 Asymptotic evaluation of G2(N)

It can be seen in Figure 2 that J(α) switches rapidly above
αc to its large angle asymptotic behaviour:

µ̄2J(α) � − 1
4 sin2(α/2)

(53)
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so we may with a fair precision use this simplified expres-
sion for J(αn), with αn = 2πn/N , to evaluate the sum in
equation (40) for G2(N). At low temperature the number
of plane waves N is large and the sum is dominated by
the terms with small n corresponding to small angles, for
which we have sin(α/2) � α/2. Hence we have for the sum
coming in equation (40) for G2(N):

4
N

N−1∑

n=1

µ̄2J

(
2πn
N

)
� − 8

N

N/2−1∑

n=1

1
4 (nπ/N)2

= −N
3

+ O
(

1
N

)
. (54)

For even N , we have also to evaluate the contribution
coming from the terms in equation (42) containing J̃(α).
Again we can use for most angles the asymptotic expres-
sion equation (32) for J̃(2πn/N). Once more the domi-
nant contribution comes from the small n terms, and the
logarithmic leading behaviour is accurately given by the
asymptotic expression of J̃(α) as:

4
N

N/2−1∑

n=1

µ̄2J̃

(
2πn
N

)
�−2π

N

N/4∑

n=1

1
2πn/N

= − lnN+O(1).

(55)
We see here explicitly that J(α) has a dominant role com-
pared to J̃(α). Taking into account the J(0) contributions,
the dominant behaviour of G2(N) can be summarized in
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the limit of large plane wave number N and low temper-
ature as:

µ̄2G2(N) � 1
2Nt

− N

3
N odd (56)

µ̄2G2(N) � 1
2Nt

− N

3
− lnN + const. N even. (57)

These expressions correspond actually in Figure 5 only to
the rising part of [G2(N)]−1 on the low temperature side.
The downturn of [G2(N)]−1 for higher temperature is due
to contributions from the positive part of J(α) which are
beyond our asymptotic approximation equation (53). Nev-
ertheless we have also found above the critical tempera-
tures for switching from a given value of N to the next
one. From Figure 5 it is seen that it is enough to plug
these critical temperatures into the evaluation of the ris-
ing part of [G2(N)]−1 to obtain the free energy at the
transitions. When we substitute accordingly in these ex-
pressions equations (56) or (57) the value N = 2π/αc for
the optimum plane wave number we have:

µ̄2G2(N) =
αc

4πt

(
1 − 8π2t

3α2
c

)
+ O(ln(1/t)). (58)

Since 8t/α2
c ∼ 1/ ln(1/t) from equation (47), we find that

G2(N) is always positive in the low temperature range
(more precisely we have 1 − (8π2t)/(3α2

c) = 1 − π2/6x
which is positive as soon as x > π2/6, i.e. from equa-
tion (45) exactly for t < 0.62). This means that the tran-
sition stays always second order (a negative sign would
have implied a first order transition and a breakdown of
our fourth order expansion).

Finally it seems from equations (56–57) that it is
favourable to have an even number of plane waves in order
to take advantage of the additional J̃ contribution. This
can be confirmed by a more careful comparison between
two consecutive values of N . Let us assume that N is odd
with N = 2π/αc and compare G2(N) to G2(N − 1). By
going from N to N − 1 we gain naturally the J̃ term in
equation (57), but we increase the first term due to the
unfavorable of the J(0) term. Nevertheless:

µ̄2 [G2 (N − 1) −G2 (N)] =

1
2N (N − 1) t

− ln (N − 1) + O (1) . (59)

where the dominant term becomes exactly with the help
of equation (45):

µ̄2 [G2 (N − 1) −G2 (N)] =

− x

(
1 − 2

π2

)
+

5
4

lnx+
1
4

ln
32
π

(60)

which is always negative since its maximum, reached for
1/xm = (4/5)(1− 2/π2), is −0.107. Therefore the asymp-
totic evaluation of G2(N) shows indeed explicitly that the
only order parameters which appears at low temperature
are those with an even number of plane waves, in agree-
ment with our exact numerical results.

5.3 Phenomenological interpretation

It is interesting to compare our results to the pairing ring
picture explored by Bowers and Rajagopal [20] (BR) in the
three dimensional case. BR have looked at the free energy
expansion at zero temperature in 3D, extending the work
of Larkin and Ovchinnikov. In the case of multiple plane
waves in the order parameter, they have pointed out a
simple physical interpretation of their results. Their pic-
ture is based on the Fulde and Ferrell study [1] of a single
plane wave order parameter where they showed that one
may separate the wavevector space in two complementary
domains: the pairing region and the pair breaking region.
In the case of a vanishing order parameter and consid-
ering only wavevectors at the Fermi surface, the pairing
region is merely an infinitely thin circle. It is given by the
intersection of the up and down spin Fermi surfaces, after
shifting one of them by q. The total opening angle of this
circle is therefore given by ψ0 = arccos(1/q̄). In 3D and at
T = 0, q̄ = 1.1997 which gives ψ0 = 67.1◦. For a non-zero
order parameter amplitude ∆, the circle broadens and be-
comes a ring whose width is given by ∆/µ̄. Therefore, the
pairing region for a single plane wave is a ring drawn on
the Fermi surface, whose center is on the plane wave direc-
tion q (the restriction to the Fermi surface is justified by
the fact that only wavevectors close to the Fermi surface
are relevant for pairing).

In the case of multiple plane waves in the order param-
eter, BR showed that the intersection of pairing circles
from different plane waves is energetically largely unfa-
vored, the worst case being when two circles are exactly
in contact. The maximization of the pairing regions leads
naturally to increase as much as possible the plane waves
number N with the constraint that they are no intersect-
ing circles. This leads to nine circles on the Fermi surface.
BR rather concluded that the least energy state was the
one with eight plane waves for “regularity” reasons. In
particular, this leads to a real order parameter. We see
now that our cascade in 2D is a direct consequence of
these two heuristic principles: the no-intersecting circles
rule and the maximization of plane waves.

In 2D, the circles are replaced by pairs of points sep-
arated by the angle ψ0, and the no-intersecting rule be-
comes now a no-entanglement rule between different pairs.
But this is just equivalent to our above finding from Fig-
ure 2 that there is an effective short range repulsion be-
tween different wavevectors q, with indeed the worst case
corresponding to the contact since the maximum of J(α)
is just below its zero. The contact condition a = β̄2/2
that we have found (corresponding to the maximum of
J(α)) can be rewritten as cos(α/2) = 1/q̄ which implies
α/2 = ψ0/2. This is exactly the same as the contact condi-
tion of BR. Next we have found explicitly that it is indeed
favorable to maximize the number of plane waves, taking
the short range repulsion into account. Our cascade is due
to the fact that, when the temperature goes to zero, ψ0

also drops to zero and the pairing region for a single plane
wave shrinks to a single point, corresponding to the situ-
ation where the two up and down Fermi circles are just in
contact.
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5.4 Limiting order parameter

One may wonder what the order parameter looks like
when we go right to the singular situation of filling out
the whole Fermi circle with wavevectors. This is the limit
of our cascade of order parameters when we go to T = 0.
Naturally we may expect a somewhat unconventional re-
sult for this singular limit. Actually we first note that there
is no well defined answer to this question. Indeed as we
have already noted the phases of all the cosines we have
to add up are free, which leaves an infinite degeneracy
for the order parameter. Presumably, in a real situation
(with a finite number of wavevectors), these phases will
be determined by boundary conditions, or by smaller per-
turbations which will occur in a real system compared to
the simple model we have studied.

We may nevertheless want to look at the result for the
specific case where all the phases are chosen to be zero.
In this case we have simply to make the angular average
of cos(q.r) over all the directions for the wavevector q.
This leads to an order parameter proportional to J0(qr),
where J0(x) is the Bessel function. This order parameter is
somewhat localized around the origin and decreases slowly
with oscillations. Such an order parameter is comparable
to a soliton. The analogous case for a one-dimensional
situation is a domain wall. This is comparable to the one
which has been found by Burkardt and Rainer [9], in their
study of a one-dimensional order parameter, as occuring at
the transition (deep inside the superfluid domain) between
their FFLO phase and the uniform BCS phase.

6 Conclusion

In this paper we have investigated the low temperature
range for the FFLO transition in two dimensions and we
have shown that the order parameter is no longer a simple
cos(q.r) at the second order transition, in contrast with
the situation found near the tricritical point. Instead the
transition is toward more and more complex order param-
eters when the temperature goes to zero, which gives rise
to a cascade with, in principle, an infinite number of tran-
sitions (in practice for a superconductor similar to a high
Tc compound, with a critical temperature of order 100 K,
Figure 6 shows that one should reach an order parame-
ter with 20 plane waves by going down to 0.1 K, which
is naturally quite easy). At the transition these order pa-
rameters are in general a superposition of an even num-
ber of plane waves with equal weight and equal wavevec-
tor modulus, which corresponds to a real order parameter
equal to a superposition of cosines. The directions of these
wavevectors are found to be equally spaced angularly, with
a spacing which goes to zero when the temperature goes
to zero, which is the reason for the ever increasing number
of plane waves in this limit. The singular behaviour in this
limit T = 0 is actually present in all physical quantities.
It arises because, in order to obtain the lowest energy, the
two Fermi circles corresponding to opposite spins come
just in contact when one applies the shift corresponding
to the wavevector q of the FFLO phase. This is this situa-
tion, with these two circles just touching each other, which

gives rise to the singularities. Naturally this is linked to
the fact that in 2D the Fermi surface is actually a line.
Hence this singularity is a general feature of 2D physics
and we may expect it to give rise to similar consequences
in more realistic and more complex models describing ac-
tual physical systems.

Naturally in this paper we have addressed this re-
markable situation in the most simple physical frame. We
have considered the simplest BCS model with isotropic
Fermi surface, that is a circle for our 2D case. Quite ob-
viously impurities will have the systematic negative effect
they are well known to have in general for FFLO phases.
But there are systems, mentioned in the introduction, for
which the physics of FFLO phases is relevant and no impu-
rities are present. Moreover in the case of superconductors
one may try to avoid them as much as possible. Clearly
their effect [14] will be to wash out the end of the cas-
cade, where a large number of wavevectors are present.
More precisely the finite mean free path l will produce
an uncertainty in the wavevector δq ∼ 1/l, and an uncer-
tainty of order vF /lµ̄ in the direction of the wavevector
q. When this is of order of the angular separation be-
tween two neighbouring wavevectors in the order param-
eter, the cascade should stop. Taking µ̄ ∼ Tc0, this leads
to a maximum number of wavevectors in the cascade of
order N ∼ π(Tc0/EF )(l/λF ).

Naturally if anisotropy is introduced in the disper-
sion relation of the electrons, or in the effective electron-
electron interaction, or both, the physics will be more
complex. But there is no such anisotropy for ultracold
Fermi gases. Moreover a number of compounds are known
to have nearly isotropic Fermi surfaces, in which case the
cascade should suffer little modifications. Nevertheless the
modification of the cascade by Fermi surface anisotropy is
of importance, and it will be taken up in further work [21].
In the same way we expect Fermi liquid effects [9] to bring
important quantitative modifications. Similarly if we con-
sider a quasi 2D superconductor with a magnetic field not
perfectly aligned with the planes, currents will be pro-
duced and orbital contributions to the free energy will
arise. Again in the case of ultracold Fermi gases none of
these problems arises. Anyway in order to have the physics
right in all these more complex situations, it is quite clear
that one has to obtain the correct limit in the simplest
possible case which is the one we have considered in the
present paper.

Appendix A

In this section we rederive rapidly our result equation (11)
for the leading order of the optimal wavevector at low tem-
perature, taking the same starting point as Bulaevskii [18].

We start from equation (11) of reference [18]:

ln(Tc/T ) =
1
π

Re
∫ PvF

−PvF

dΩ
1√

P 2v2
F −Ω2

× [ψ(1/2 + i(2µ0H +Ω)/4πT )) − ψ(1/2)] . (61)
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We go to our notations by setting H = µ̄, P = q and
introduce as above our reduced variables q̄ = qvF /2µ̄
and t = T/µ̄. When we perform the angular integration
as in reference [18] by setting Ω = PvF cos θ and intro-
duce for the digamma function the integral representation
(Eq. (13) of Ref. [18]):

ψ(x) = lnx−1/2x−2
∫ ∞

0

ydy

(y2 + x2)(exp(2πy) − 1)
(62)

we obtain equation (14) of reference [18] (correcting some
minor misprints). We can then expand the result to all
orders in t and show that all the terms in the expansion
are zero. However rather than displaying the steps of this
calculation here, it is more convenient to immediately re-
mark that the optimal q̄ is obtained by writing that the
derivative of equation (11) with respect to q̄ is zero. This
provides an equivalent calculation (we work on the deriva-
tive instead of working on the function), which is some-
what easier and allows us also to make in the following
the direct contact with our result. This condition on the
derivative, which gives the equation for the optimal q̄, is:

Im
∫ π

0

dθ

π
ψ′(1/2 + i(1 + q̄ cos θ)/2πt)) = 0. (63)

Taking the derivative of the above integral representa-
tion, we obtain a corresponding representation for ψ′ on
which the angular integration is easily performed (the in-
tegrals can be found in Gradstein and Ryzhik [22]). We
display the result by introducing the function f(x) =
x/
√

(x2 − 1) and setting x0 = 1/q̄ , ε = −iπt/q̄ and
x = x0 + ε. The result is:

Re
[
1 − f(x) + εf ′(x)

− π

2

∫ ∞

−∞

dy

sinh2 (πy)
(f (x) − f (x0 + ε (1 + 2iy)))

]
= 0

(64)

where the integral goes from −∞ to ∞ because we have
collected two terms into one. Now we can write for the
first three terms the Taylor expansion:

1− f(x) + εf ′(x) = 1− f(x0) +
∞∑

0

εn+1

n!
n

n+ 1
f (n+1)(x0).

(65)
When we take the real part, only the odd order derivatives
of f contribute because q̄ is near 1 with q̄ > 1, which makes
x0 < 1 and Ref (2p)(x0) = 0. This gives:

Re [1 − f(x) + εf ′(x)] = 1 +
∞∑

p=1

ε2p+1

(2p)!
2p

2p+ 1
f (2p+1)(x0).

(66)
Similarly we can perform the expansion in the integral
and expand (1 + 2iy)n by introducing the binomial coef-
ficients Cp

n. All the resulting integrals can be found in

Gradstein and Ryzhik [22], and expressed in terms of
Bernoulli numbers B2m. This leads to:

π

2
Re
∫ ∞

−∞

dy

sinh2(πy)
[f(x) − f(x0 + ε(1 + 2iy))] =

∞∑

p=1

ε2p+1

(2p+ 1)!
f (2p+1)(x0)

p∑

m=1

C2m
2p+14

mB2m. (67)

Now a remarkable identity (found for example in
Gradstein and Ryzhik [22]) for Bernoulli numbers states
that:

p∑

m=1

C2m
2p+14

mB2m = 2p. (68)

As a result, by gathering all the terms, all the coefficients
of the powers of ε are zero, and it is not possible to satisfy
the condition that the above derivative is zero. The answer
to this puzzle is that the contribution of the terms we have
considered is not exactly zero, but exponentially small,
which explains why we find it to be zero in a perturbative
expansion. This is shown now in the following.

We start again from the above condition equation (64)
found for the optimum wavevector. We transform the inte-
gral by shifting the integration contour toward the upper
complex plane by i/2 for the variable y. First we have to
take care that integrant in the above integral has no sin-
gularity for y = 0, because proper cancellation between
various terms. Hence we can also say that this integral is
equal to its principal part. Next if we want a complete
contour C, we have to add to this principal part the con-
tribution of an infinitesimal semi-circle around y = 0 with
positive imaginary part. This contribution is easily found
by residues to be equal to −εf ′(x), so we have:

Re
[
εf ′ (x) − π

2

∫ ∞

−∞

dy

sinh2 (πy)
(f (x)

−f (x0 + ε (1 + 2iy)))
]

= −π
2
Re
∫

C

dy

sinh2 (πy)

× [f (x) − f (x0 + ε (1 + 2iy))] . (69)

Now we set πy = z + iπ/2 and make use of i sinh(z +
iπ/2) = i cosh(z) which gives:

Re
[
εf ′(x) − π

2

∫ ∞

−∞

dy

sinh2(πy)
(f(x)

− f(x0 + ε(1 + 2iy)))
]

=
1
2
Re
∫ ∞

−∞

dy

cosh2 z

× (f(x) − f(x0 + 2tz/q̄)) (70)

where the contour runs infinitesimally below the real z
axis. The first term in the last integral is just equal to f(x),
so our equation becomes:

Re [1 − 1
2

∫ ∞

−∞

dy

cosh2(πy)
f(x0 + 2tz/q̄)] = 0. (71)
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It is easily checked that this equation is identical to our
equation (10). Note that the fact that the contour runs
infinitesimally above or below the real axis is unimportant
since we take the real part, and the contribution along the
cut due to the square root is purely imaginary.

In conclusion we have obtained our basic equation
for the second order term by taking the same start-
ing point as reference [18]. The end of the argument
to obtain equation (11) is naturally the same as follow-
ing our equation (10). In particular this argument shows
that the integral in the above formula is proportional to
exp [−(q̄ − 1)/t], so it can not be expanded in powers of t.
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